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Introduction

Most mathematical constructions of topological quantum field theories

(TQFT’s) are build using constructions from classical algebra e.g. vector

spaces. This captures a large classes of examples appearing in physics e.g.

modular categories or fusion categories. Nevertheless many others can only

be described mathematically by using homological algebra. Examples of

those are topological twisting of supersymmetric theories (e.g. Donaldson-

theory) or categories of D-branes in A and B-models. In the following we
describe how homological algebra influences 1-dimensional TQFT’s.

QuantumMechanics as a 1d-TQFT

Consider a Quantum mechanical system and denote by V the vector space
of ground states. We denote such a state by |Ψ〉 ∈ V . Dually we have the
dual state 〈Ψ| ∈ V ∨. To describe the Quantum mechanics of ground states

we introduce a graphical calculus. In the graphical calculus denote V by

” + ” and V ∨ by ” − ”. Vertically aligned dots denote the tensor product
of the corresponding vector spaces. These correspond to non-interacting

systems.
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Figure 1. a) Evolution of states b) Change of order |Ψ〉 |Φ〉 7→ |Φ〉 |Ψ〉

The time evolution of a state is described by directed lines. We associate

to those linear maps from the state spaces on the left to those on the right.

To a horizontal line we associate the identity map.

Further we can pair states |Ψ〉 ∈ V wit dual sates 〈Φ| ∈ V ∨ to obtain transi-

tion amplitudes. Under the assumption that V is finite dimensional it has a

basis {|Ψi〉}i∈I and we can additionally define Figure 2 b)
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Figure 2. a) Evaluation 〈Ψ|Φ〉 b) Creation of identity
∑

i∈I |Ψi〉 〈Ψi|

These are the basic building blocks we can use to understand more difficult

diagrams. Since the ground states have no dynamics the interpretation of

the graphical calculus is independent of the length and shape of lines as long

as we keep the endpoints fixed. Therefore we have an identification
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Figure 3. Graphical presentation of
∑

i∈I |Ψi〉 〈Ψi|Φ〉 = |Φ〉

This is the fundamental consistency condition that our graphical calculus

has to satisfy to be well defined. An interesting diagram that we can build

is the circle
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Figure 4. Construction of the circle

The value of the circle is given by∑
i∈I

〈Ψi|Ψi〉 = dim(V ) (1)

A consistent graphical calculus as above is equivalent to a 1-dimensional

TQFT. This calculus is consistent, if and only if the vector space V is finite

dimensional. Can we construct a graphical calculus more generally?

Homological algebra

We consider a possible ∞-dimensional vector space V , with a Z-grading
V ' ⊕i∈ZVi and with linear maps {di}i∈Z of the form

...
di+3−−→ Vi+2

di+2−−→ Vi+1
di+1−−→ Vi

di−→ Vi−1
di−1−−→ ... (2)

s.th. di ◦ di+1 = 0. We call such an object a complex of vector spaces and
denote it by (V•, d•).
Since di ◦ di+1 = 0 it follows, that im(di+1) ⊂ ker(di). We call the quotient

Hi(V•) = ker(di)/im(di+1) ⊂ Vi (3)

the i-th homology space of the complex V• and the direct sum of all of these

H•(V ) the homology of V•.

Analogous to the case of vector spaces every complex V• admits a dual com-

plex V ∨
• . A chain map f• : (V•, dV

• ) −→ (W•, dW
• ) is given by a collection of

linear maps {fi : Vi → Wi}i∈Z, s.th. dW
i ◦ fi = fi−1 ◦ dV

i .

The interesting thing for morphisms of chain complexes is that they ad-

mit a weaker notion then equality. Two morphisms of chain complexes

f•, g• : V• → W• are called chain homotopic, if there exists a collection

of maps {Hi : Vi → Wi+1}i∈Z, s.th.

dW
i+1Hi + Hi−1d

V
i = fi − gi (4)

In homological algebra we can therefore define two chain maps to be ”the

same”, if they are chain homotopic.

Derived 1d-TQFT

We now use homological algebra to enhance our graphical calculus. Con-

sider a complex V• and assume thatH•(V) is finite dimensional. We choose
a basis {|Φi〉}i∈I of H•(V ) with dual basis {〈Φi|}i∈I . In the construction of

our graphical calculus we can proceed as before, but we associate to Figure

2. b) the map

λ ∈ C 7→ λ
∑
i∈I

|Φi〉 〈Φi| ∈ V• ⊗ V ∨
• (5)

Using this interpretation we can compute the consistency condition Figure

3 to be the chain map

|Ψ〉 ∈ Vi 7→
∑
i∈I

〈Φi|Ψ〉 |Φi〉 ∈ Hi(V•) ⊂ Vi (6)

that projects onto the homology. This is map is not equal to the identity,

but chain homotopic! Therefore if we consider the value of the graphical

diagrams up to chain homotopy the graphical calculus becomes consistent.

Similarly we can compute the value of the circle to be∑
i∈I

〈Φi|Φi〉 =
∑
i∈I

dim(Hi(V )) (7)

Generalizing the case of vector spaces the following is true.

Classification of derived 1-dimensional TFT’s [1]

Let V• ∈ D(C) be a chain complex. V• defines a 1-dimensional oriented

TFT

Z : Bordor
1 → D(C) (8)

with values inD(C) the derived category of vector spaces, iff V• has finite

dimensional homology. In particular every finite dimensional vector space

defines such a TFT.

Outlook

A similar story is known in the study of 2-dimensional fully extended TQFT’s
[2]. Derived 2d TQFT’s are classified by smooth and proper dg algebras, a

more general class containing semi-simple algebras. My research tries to

understand this kind of phenomena also in higher dimensions, in particular

in dimension 3. These kind ofTQFT’s are generalizations of so called Turaev-
Viro TQFT’s. Interesting questions in this direction are:

What is the correct generalization of a fusion category?

Which non-semi simple tensor categories induce such TQFT’s?

How to compute the TQFT?
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